В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Yuliya0264
Yuliya0264
12.12.2021 06:12 •  Геометрия

Из точки к плоскости проведены две наклонные, длины которых равны 25 см и 30см. разность проекции этих наклонных на плоскости равна 11см. вычислите расстояние от данной точки до плоскости.

Показать ответ
Ответ:
Kanapluhaaa
Kanapluhaaa
24.05.2020 23:03

ВО - это высота, тоесть расстояние которое нам нужно найти.

АВ и ВС - наклоные, они и гипотенузы, АО и ОС - проєкции наклонных, они служат как катеты. 

АВ  = 30см,   ВС = 25 см. Наибольшая проєкция та в которой гаклонна больша. В даном случае наклонна АВ больше, значит АО тоже больше за ОС.

   ⇒  АО - ОС = 11см

Пусть ОС = х, тогда АО = 11 + х

Рассмотрим прямоугольника АВО (угол О = 90 градусов).

ВО² = АВ² - АО² - за теоремой Пифагора

ВО² = 900 - (11 + х)²

ВО² = 900 - (121 + 22х + х²)

ВО²  = 900 - 121 - 22х - х²

ВО² = 779 - 22х - х²

 

Теперь Рассмотрим прямоугольник ОВС:

ОВ² = ВС² - ОС²

ОВ² = 625 - х²

Приравниваем ОВ²

779 - 22х - х² = 625 - х²

22х = 154

х = 7

ОС = 7 см

ВО² = 625 - 49

ВО² = 576

ВО = 24 см


Из точки к плоскости проведены две наклонные, длины которых равны 25 см и 30см. разность проекции эт
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота