Идок-ва с рисунком билет № 9 1. что такое секущая? назовите пары углов, которые образуются при пересечении двух прямых секущей. сделайте рисунок. 2. докажите, что катет лежащий против угла в 30* равен половине гипотенузы. 3. прямые ав и cd пересечены секущей mn в точках к и р соответственно. являются ли прямые ав и cd параллельными, если вкр = 112º и крd = 58º?
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.