Проведем высоту из вершины B (новая вершина Е). Получим прямоугольный треугольник. Отрезок AE = BC, так как ad : bc = 3:1. Вычислим AE по формуле AE = AB * cos ∠BAD = 8*√3/2 = 4*√3
Из этого следует BC = 4*√3, AD=12*√3 Зная все стороны находим площадь. S = (BC+AD)/2 * √AB² - (AD-BC)²/4 = 8*√3 * √64-192/4 = 32*√3 ответ: 32*√3
Второй вариант. Найдем высоту h трапеции, зная длину отрезка AE. h² + (4*√3)² = 8² h = 4 Вычисляем площадь по формуле через высоту S = (4*√3+12√3)/2*h = 32*√3 ответ: 32*√3 ответ одинаковый в двух вариантах.
Вычислим AE по формуле AE = AB * cos ∠BAD = 8*√3/2 = 4*√3
Из этого следует BC = 4*√3, AD=12*√3
Зная все стороны находим площадь.
S = (BC+AD)/2 * √AB² - (AD-BC)²/4 = 8*√3 * √64-192/4 = 32*√3
ответ: 32*√3
Второй вариант.
Найдем высоту h трапеции, зная длину отрезка AE.
h² + (4*√3)² = 8²
h = 4
Вычисляем площадь по формуле через высоту
S = (4*√3+12√3)/2*h = 32*√3
ответ: 32*√3
ответ одинаковый в двух вариантах.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.