Хоть сейчас ! 1) в равнобедренном треугольнике авс с основой ав cos ∠a = 0,8; ас = 20 см. найдите высоту треугольника, проведенную к основе. 2) найдите радиус круга, если катет вписанного в него прямоугольного треугольника равен 13√3 см, а прилегающий к нему угол - 30°. 3) диагональ прямоугольника равна 30 см, а его стороны относятся как 3 : 4. найдите периметр прямоугольника.
Решение
Пусть M – точка пересечения медиан прямоугольного треугольника ABC с катетами AC и BC, P и Q – проекции точки M на AC и BC соответственно,
MP = 3, MQ = 4, K – середина BC.
Поскольку медианы треугольника делятся точкой пересечения в отношении 2 : 1, считая от вершины треугольника, то AC = 3PC = 3MQ = 12, BC = 9. Значит, AB = 15, SABC = ½ AC·BC = 54.
Поскольку высота треугольника ABC, проведённая из вершины прямого угла, равна AC·BC/AB = 36/5, то искомое расстояние равно 12/5.
ответ
12/5.
Как решить уравнение
Ваше уравнение
1
−
8
(
3
−
2
)
=
2
(
1
−
)
1-8(3-2y)=2(1-y)
1−8(3−2y)=2(1−y)
Вычисление значения
1
Переставьте члены уравнения
1
−
8
(
3
−
2
)
=
2
(
1
−
)
1
−
8
(
−
2
+
3
)
=
2
(
1
−
)
2
Раскройте скобки
1
−
8
(
−
2
+
3
)
=
2
(
1
−
)
1
+
1
6
−
2
4
=
2
(
1
−
)
3
Вычтите числа
1
+
1
6
−
2
4
=
2
(
1
−
)
−
2
3
+
1
6
=
2
(
1
−
)
4
Переставьте члены уравнения
−
2
3
+
1
6
=
2
(
1
−
)
1
6
−
2
3
=
2
(
1
−
)
5
Переставьте члены уравнения
1
6
−
2
3
=
2
(
1
−
)
1
6
−
2
3
=
2
(
−
+
1
)
Ещё 7 шагов
Решение
=
2
5
1
8
Объяснение: