Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Для начала запишу условие задачи так, как его понимаю из данной для решения записи.
Периметр треугольника равен 24 см. Высота делит его на два треугольника, периметр которых равен 18 см и 14 см Найдите высоту треугольника АВС.
Сделаем рисунок, с ним проще объяснить решение, хотя вполне и без него можно обойтись.
Р АВС=24 см
Р АВН=18 см
Р СВН=14 см
Р Δ АВН= АВ+АН+ВН
Р Δ ВСН= ВС+НС+ВН
Р Δ АВС= АВ+ВС+СА
Сложим периметры треугольников АВН и ВНС.
АВ+АН+ВН+ВС+НС+ВН=АВ+ВС+(АН+НС)+2ВН
Понятно, что АН+НС=АС
И по чертежу, и по записи видно, что периметр АВС меньше суммы периметров двух других треугольников на сумму двух высот.
Р Δ АВН+ Р Δ ВНС=18+14=32 см
2 ВН=32 - 24=8 см
ВН= 8:2=4 см
1 на рисунке 2 ответ:
DA=26,1 см, DC= 26,1 см
Пошаговое объяснение:
Воспользуемся теоремой о серединном перпендикуляре к отрезку:
"Любая точка, лежащая на серединном перпендикуляре к отрезку равноудалена от концов этого отрезка". Точка D лежит на серединном перпендикуляре к отрезку АВ и к отрезку ВС.
Следовательно, верны равенства: DB=DA=DC
Т.к. по условию, DB=26,1 см, то DA=DC=26,1 см
3 ответ:
9
Объяснение:
Три высоты пересекаются в одной точке. Т.к. две высоты пересекаются в одной точке, через эту точку проходит и третья высота, таким образом BN - высота р/б тр-ка потому что проходит через точку пересечения высот, т.к. AC - основание BN - не только высота но и медиана, значит n - середина AC, NC = 1/2 AC = 9
4Точка D равноудалена от всех сторон треугольника, то она является точкой пересечения биссектрис данного треугольника.
Против меньшего угла всегда расположена короткая сторона.
Найдем угол, под которым видна короткая сторона, используя данные углы
Сумма углов треугольника равна 180 градусам
Получаем, 180 - (106/2 + 52/2) = 101 градус
5 Решение:
Серединный перпендикуляр пересекает сторону ВС в т.К.
Рассмотрим треугольники :ВКД и ДКС-они прямоугольные.
1) ДК- общая,
2)ВК=КС- по условию,
3)УголВКД=углуДКС, отсюда следует,что треугольники: ВКД=ДКС-по признаку равенства треугольников( по двум сторонам и углу между ними).
Значит ВД=ДС=30(см.),
АД= АС-ДС=40-30=10(см.)
ответ: 10см.;30см.
там цифры немного не правильные