Якщо гіпотенуза й катет одного прямокутного трикутника відповідно рівні гіпотенузі й катету іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катети одного прямокутного трикутника відповідно рівні катетам іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катет і протилежний до нього гострий кут одного прямокутного трикутника відповідно рівні катету і протилежному до нього гострому куту іншого прямокутного трикутника, то такі трикутники рівні.
1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Ознаки рівності прямокутних трикутників:
Якщо гіпотенуза й катет одного прямокутного трикутника відповідно рівні гіпотенузі й катету іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катети одного прямокутного трикутника відповідно рівні катетам іншого прямокутного трикутника, то такі трикутники рівні.
Якщо катет і протилежний до нього гострий кут одного прямокутного трикутника відповідно рівні катету і протилежному до нього гострому куту іншого прямокутного трикутника, то такі трикутники рівні.
Объяснение:
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.