геометрия 8 класс, олимпиада В параллелограмме ABCD биссектриса угла B пересекает сторону AD в точке L. Оказалось, что ∠BLC=90∘. Найдите длину отрезка CL, если BL=20 и DL=26.
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
1)16 корней из 3× pi
2)288 корней из 3 ×pi
Объяснение:
1)Sбок. цил.= 2×pi×r×h, r=AB/2, h=CB, pi=~3,14(иногда pi оставляют в ответе )
sinCAB=CB/AC, cosCAB=AB/AC
sin60°=CB/8, (корень из 3)/2=CB/8, CB= (8корней из 3)/2=4×корней из 3
cos60°=AB/8, 1/2=AB/8, 2AB=8, AB=4
Sбок. цил.=2*3,14×2×4 корней из 3=50,24 корней из 3 (или = 16корней из 3 ×pi)
2)Sбок. цил.= 2×pi×r×h, r=OA=OB, h=OO1, pi=~3,14(иногда pi оставляют в ответе )
треугольник AOB-египетский, тк у него стороны равны соотношению 3:4:5
Следовательно, OB=12
(ну или решать через теорему Пифагора OB²=15²-9², OB=Корень из 144,OB=12)
в цилиндр можно вписать только равнобедренный треугольник
=>доп.построение:продолжим сторону OB до пересечения с окружностью, пусть эта сторона BB1=12×2=24=B1O1=O1B
OO1²=24²-12², OO1=12 корней из 3
Sбок. цил.=2×pi×12×12корней из3=288корней из 3×pi
Поскольку сумма углов треугольника равна 180o, то можно считать, что данные углы противолежат вершине, из которой проведена данная медиана.
Пусть в треугольнике ABC известны углы $ \angle$B = $ \beta$ и $ \angle$C = $ \gamma$ и медиана AD = ma, проведённая к стороне BC. На продолжении отрезка AD за точку D возьмём точку A1 так, что DA1 = AD. В треугольнике AA1B известна сторона AA1 = 2ma и углы $ \angle$ABD = $ \beta$ и $ \angle$A1BD = $ \angle$ACB = $ \gamma$.
Из точки B отрезок AD виден под углом $ \beta$, а отрезок A1D — под углом $ \gamma$ Тогда вершина B есть пересечение двух дуг, построенных на AD и DA1, вмещющих углы $ \beta$ и $ \gamma$ соответственно и расположенных по одну сторону от прямой AA1. Отсюда выстекает следующее построение.
Строим середину D произвольного отрезка AA1 = 2ma. На отрезке AD как на хорде построим дугу окружности так, чтобы из каждой точки этой дуги отрезок AD был виден под данным углом $ \beta$. По ту же сторону от прямой AA1 строим на отрезке A1D как на хорде дугу окружности так, чтобы из каждой точки этой дуги отрезок A1D был виден под данным углом $ \gamma$. Пусть B — точка пересечения этих дуг, отличная от D. На продолжении медианы BA1 треугольника ABA1 отложим отрезок A1C, равный BA1. Тогда треугольник ABC — искомый.
Действительно, AD = $ {\frac{1}{2}}$AA1 = ma — данная медиана.
$\displaystyle \angle$ABC = $\displaystyle \angle$ABD = $\displaystyle \beta$, $\displaystyle \angle$ACB = $\displaystyle \angle$A1BC = $\displaystyle \angle$A1BD = $\displaystyle \gamma$
-- данные углы.