ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ:
1) Чертим горизонтальную прямую. Отмечаем на ней точку С.
2) Из С общепринятым восстанавливаем перпендикуляр.
3) От С откладываем длину катета СВ=2, который противолежит углу А. Отмечаем точку В.
4) Из В, как из центра, циркулем раствором 3 делаем насечку на перпендикуляре и отмечаем точку А.
Построенный угол САВ - искомый, его синус =2/3.
------------------
б.
Построение угла аналогично предыдущему, но в п. 3 откладываем длину прилежащего к искомому углу катета СА. Затем из А раствором циркуля=4 проводим полуокружность до пересечения с перпендикуляром.
Тогда СА/АВ=3/4, и угол САВ - искомый, косинус которого 3/4.
ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ:
а.
1) Чертим горизонтальную прямую. Отмечаем на ней точку С.
2) Из С общепринятым восстанавливаем перпендикуляр.
3) От С откладываем длину катета СВ=2, который противолежит углу А. Отмечаем точку В.
4) Из В, как из центра, циркулем раствором 3 делаем насечку на перпендикуляре и отмечаем точку А.
Построенный угол САВ - искомый, его синус =2/3.
------------------
б.
Построение угла аналогично предыдущему, но в п. 3 откладываем длину прилежащего к искомому углу катета СА. Затем из А раствором циркуля=4 проводим полуокружность до пересечения с перпендикуляром.
Тогда СА/АВ=3/4, и угол САВ - искомый, косинус которого 3/4.