Контрольна робота з геометрії 8 класу з теми «Подібність трикутників» містить два варіанти по 7 завдань в кожному, 4 з яких – тестові, 3 – вимагають повного розв’язання і обгрунтування
Варіант 1
(3б.) Заповніть пропуски:
а) Якщо ∆ABC ∆MNK, то B = …, M = …, C = …;
б) якщо ∆ABC ∆MNK, то ;
в) Якщо BD — бісектриса кута ABC (рис. 1), то .
У завданнях 2—4 виберіть правильну відповідь. (Кожне завдання оцінюється 1 б.)
∆АВС ∆А1В1С1, АС = 8 см, А1В1 =12 см, В1С1 =14 см, А1С1= 16 см. Знайдіть сторони АВ і ВС.
а) 24 см, 28 см; б) 6 см, 7 см; в) 14 см, 16 см.
∆АВС ∆А1В1С1, АВ = 7 см, ВС = 6 см, АС = 5 см. Знайдіть периметр трикутника A1B1C1, якщо В1С1 = 2 см.
а) 6 см; б) 24 см; в) 36 см.
Катет прямокутного трикутника дорівнює 10 см, а його проекція на гіпотенузу — 8 см. Знайдіть гіпотенузу цього трикутника,
а) 1,25 см; б) 6 см; в) 12,5 см.
Розв’яжіть задачі 5—7 з повним поясненням.
(1 б.) За даними рис. 2 доведіть подібність трикутників ABE і CDE.
(2 б.) Дві сторони трикутника дорівнюють 6 см і 8 см. Бісектриса трикутника, що проведена до третьої сторони, поділяє її на відрізки, більший з яких дорівнює 4 см. Знайдіть периметр трикутника.
(3 б.) В трапеції ABCD її основи AB і CD дорівнюють відповідно 9 см і 12 см, а одна з діагоналей дорівнює 14 см. На які відрізки ділиться ця діагональ точкою перетину діагоналей?
Если центр окружности соединить с вершинами данного треугольника, то он (данный треугольник) поделится на 3 новых треугольника. Теперь площадь исходного треугольника можно представить в виде суммы площадей 3х новых треугольников S= s1+ s2+ s3; Пусть стороны исходного треугольника равны x y и t, тогда x+ y+ t= 16; s1= x/2* h; s2= y/2* h; s3= t/2* h; у всех трёх треугольников h является радиусом (по свойству касательной к окружности). Если по условию x+ y+ t= 16, то x/2+ y/2+ t/2= 16/2= 8; S= s1+ s2+ s3= x/2* h+ y/2* h+ t/2*h= h(x/2+ y/2+ t/2)= 2*8= 16
Контрольна робота з геометрії 8 класу з теми «Подібність трикутників» містить два варіанти по 7 завдань в кожному, 4 з яких – тестові, 3 – вимагають повного розв’язання і обгрунтування
Варіант 1
(3б.) Заповніть пропуски:
а) Якщо ∆ABC ∆MNK, то B = …, M = …, C = …;
б) якщо ∆ABC ∆MNK, то ;
в) Якщо BD — бісектриса кута ABC (рис. 1), то .
У завданнях 2—4 виберіть правильну відповідь. (Кожне завдання оцінюється 1 б.)
∆АВС ∆А1В1С1, АС = 8 см, А1В1 =12 см, В1С1 =14 см, А1С1= 16 см. Знайдіть сторони АВ і ВС.
а) 24 см, 28 см; б) 6 см, 7 см; в) 14 см, 16 см.
∆АВС ∆А1В1С1, АВ = 7 см, ВС = 6 см, АС = 5 см. Знайдіть периметр трикутника A1B1C1, якщо В1С1 = 2 см.
а) 6 см; б) 24 см; в) 36 см.
Катет прямокутного трикутника дорівнює 10 см, а його проекція на гіпотенузу — 8 см. Знайдіть гіпотенузу цього трикутника,
а) 1,25 см; б) 6 см; в) 12,5 см.
Розв’яжіть задачі 5—7 з повним поясненням.
(1 б.) За даними рис. 2 доведіть подібність трикутників ABE і CDE.
(2 б.) Дві сторони трикутника дорівнюють 6 см і 8 см. Бісектриса трикутника, що проведена до третьої сторони, поділяє її на відрізки, більший з яких дорівнює 4 см. Знайдіть периметр трикутника.
(3 б.) В трапеції ABCD її основи AB і CD дорівнюють відповідно 9 см і 12 см, а одна з діагоналей дорівнює 14 см. На які відрізки ділиться ця діагональ точкою перетину діагоналей?