1. Пусть х - коэффициент пропорциональности, тогда основание - 2х, боковая сторона 3х. Так как периметр равен 56, получаем уравнение: 2х + 3х + 3х = 56 8х = 56 х = 7 основание - 14 боковая сторона - 21
2. а) Данный отрезок надо сначала разделить на 4 части. Пусть дан отрезок АС (см. рис.1). Проведем две окружности одинакового произвольного радиуса (большего половины отрезка АС) с центрами в точках А и С. Через точки пересечения окружностей проведем прямую. точка пересечения этой прямой с отрезком (точка О) - середина отрезка АС. Затем надо разделить пополам отрезок АО. б) Радиусом, равным половине АО, с центром в вершине данного угла надо построить окружность. Точки, лежащие на этой окружности, и есть точки, удаленные от вершины угла на четверть данного отрезка.
3. а) ВМ = ВК по условию, ∠МВР = ∠КВР так как высота равнобедренного треугольника, проведенная к основанию, является и биссектрисой, ВР - общая сторона для треугольников МВР и КВР, ⇒ ΔМВР = ΔКВР по двум сторонам и углу между ними. В равных треугольниках напротив равных сторон лежат равные углы, значит ∠ВМР = ∠ВКР.
б) Из равнства треугольников МВР и КВР следует так же, что РМ = РК, а значит в равнобедренном треугольнике РМК равны углы при основании, т.е. ∠РМК = ∠РКМ.
B₁D - диагональ прямоугольного параллелепипеда. Ребро А₁В₁ перпендикулярно грани АА₁D₁D, значит A₁D - проекция диагонали на эту грань, тогда ∠A₁DB₁ = 30° - угол между диагональю и этой гранью. Ребро В₁С₁ перпендикулярно грани СС₁D₁D, значит С₁D - проекция диагонали на эту грань, тогда ∠С₁DB₁ = 45° - угол между диагональю и этой гранью.
ΔB₁A₁D: А₁В₁ = B₁D/2 = 6 см как катет, лежащий напротив угла в 30°. ΔВ₁С₁D: равнобедренный прямоугольный, В₁С₁ = С₁D = В₁D · sin 45° = 12 · √2|2 = 6√2 см Из ΔC₁CD по теореме Пифагора найдем высоту: СС₁ = √(С₁D² - CD²) = √(72 - 36) = √36 = 6 см
основание - 2х, боковая сторона 3х.
Так как периметр равен 56, получаем уравнение:
2х + 3х + 3х = 56
8х = 56
х = 7
основание - 14
боковая сторона - 21
2. а) Данный отрезок надо сначала разделить на 4 части.
Пусть дан отрезок АС (см. рис.1).
Проведем две окружности одинакового произвольного радиуса (большего половины отрезка АС) с центрами в точках А и С.
Через точки пересечения окружностей проведем прямую. точка пересечения этой прямой с отрезком (точка О) - середина отрезка АС.
Затем надо разделить пополам отрезок АО.
б) Радиусом, равным половине АО, с центром в вершине данного угла надо построить окружность. Точки, лежащие на этой окружности, и есть точки, удаленные от вершины угла на четверть данного отрезка.
3. а) ВМ = ВК по условию,
∠МВР = ∠КВР так как высота равнобедренного треугольника, проведенная к основанию, является и биссектрисой,
ВР - общая сторона для треугольников МВР и КВР, ⇒
ΔМВР = ΔКВР по двум сторонам и углу между ними.
В равных треугольниках напротив равных сторон лежат равные углы, значит
∠ВМР = ∠ВКР.
б) Из равнства треугольников МВР и КВР следует так же, что РМ = РК, а значит в равнобедренном треугольнике РМК равны углы при основании, т.е. ∠РМК = ∠РКМ.
Ребро А₁В₁ перпендикулярно грани АА₁D₁D, значит A₁D - проекция диагонали на эту грань, тогда ∠A₁DB₁ = 30° - угол между диагональю и этой гранью.
Ребро В₁С₁ перпендикулярно грани СС₁D₁D, значит С₁D - проекция диагонали на эту грань, тогда ∠С₁DB₁ = 45° - угол между диагональю и этой гранью.
ΔB₁A₁D: А₁В₁ = B₁D/2 = 6 см как катет, лежащий напротив угла в 30°.
ΔВ₁С₁D: равнобедренный прямоугольный,
В₁С₁ = С₁D = В₁D · sin 45° = 12 · √2|2 = 6√2 см
Из ΔC₁CD по теореме Пифагора найдем высоту:
СС₁ = √(С₁D² - CD²) = √(72 - 36) = √36 = 6 см
V = 6√2 · 6 · 6 = 216√2 см³