Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2 /2 = 7√2 ; Sбок = 56·7√2 /2 = 196√2 , S = 196√2 + 196 = 196(1 +√2 ) Смˆ2
Треугольник АВС равнобедренный уголА=уголС, точка О пересечение биссектрис АК и СМ
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам равны (теорема), АК=СМ
Четырехугольник АМКС, где СМ и АК - диагонали, треугольник АОС равнобедренный , угол ОАС=углуМАО =углуАСО=углуКСО = х, угол АОС=углу МОС=180-х-х=180-2х, треугольник МОК равнобедренный поскольку АК=МС и АО=ОС , то ОМ=ОК, угол ОМК=углуОКМ=
=(180 - уголМОК)/2=180- (180-2х)/2=х
т.е угол ОМК = углу АСО и угол ОАС = углу ОКМ
ЕСли при пересечении двух прямых третьей внутренние разносторонние углы равны то прямые параллельны (признаки параллельности прямых)
Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2 /2 = 7√2 ; Sбок = 56·7√2 /2 = 196√2 , S = 196√2 + 196 = 196(1 +√2 ) Смˆ2
Треугольник АВС равнобедренный уголА=уголС, точка О пересечение биссектрис АК и СМ
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам равны (теорема), АК=СМ
Четырехугольник АМКС, где СМ и АК - диагонали, треугольник АОС равнобедренный , угол ОАС=углуМАО =углуАСО=углуКСО = х, угол АОС=углу МОС=180-х-х=180-2х, треугольник МОК равнобедренный поскольку АК=МС и АО=ОС , то ОМ=ОК, угол ОМК=углуОКМ=
=(180 - уголМОК)/2=180- (180-2х)/2=х
т.е угол ОМК = углу АСО и угол ОАС = углу ОКМ
ЕСли при пересечении двух прямых третьей внутренние разносторонние углы равны то прямые параллельны (признаки параллельности прямых)