1. ∠3 = ∠1 = 72° как вертикальные, ∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов. ∠4 = 180° - ∠5 = 180°- 72° = 108° ∠2 = ∠4 = 108° как вертикальные, ∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2. Обозначим один из односторонних углов х, тогда другой 1,5х. Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°: x+ 1,5x = 180° 2,5x = 180° x = 180° / 2,5 = 72° 1,5 x = 108°
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
∠3 = ∠1 = 72° как вертикальные,
∠5 = ∠1 = 72° и ∠7 = ∠3 = 72° как соответственные при пересечении параллельных прямых а и b секущей с.
∠4 + ∠5 = 180° по свойству односторонних углов.
∠4 = 180° - ∠5 = 180°- 72° = 108°
∠2 = ∠4 = 108° как вертикальные,
∠8 = ∠4 = 108° и ∠6 = ∠2 = 108° как соответственные.
2.
Обозначим один из односторонних углов х, тогда другой 1,5х.
Сумма односторонних углов при пересечении параллельных прямых секущей равна 180°:
x+ 1,5x = 180°
2,5x = 180°
x = 180° / 2,5 = 72°
1,5 x = 108°
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
ответ: Длина хорды СМ равна 8 см.
Объяснение: