Пункты 1) и 2) относятся к варианту, когда отрезок АМ вертикален, тогда плоскость МАВ тоже вертикальна. 1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.
2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ). Отрезок FF1 равен ЕА. Поэтому F1B = (3/2)*10 = 15 см. АF1 = ЕF = 10 см. Отсюда АВ = 10+15 = 25 см.
Примечание: данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.
1) В плоскости СДЕ провести отрезок ЕВ1, равный АВ и параллельный ему. Он одновременно находится в плоскости СДЕ и в вертикальной плоскости МАВ. Поэтому точка F пересечения отрезка МВ с плоскостью СДЕ находится на пересечении отрезков МВ и ЕВ1.
2) В плоскости МАВ 2 подобных треугольника: МЕF и FF1B ( точка F1 - проекция точки F на АВ).
Отрезок FF1 равен ЕА.
Поэтому F1B = (3/2)*10 = 15 см.
АF1 = ЕF = 10 см.
Отсюда АВ = 10+15 = 25 см.
Примечание: данное решение - частный случай, так как где бы ни находилась точка М, ∆ MFE и ∆ AMB остаются подобными, отношение ЕF:AB=2:5, и АВ получается равным 25.
1) MPDA - равнобедренная трапеция
2) 36 см²
Объяснение:
1) МР - средняя линия треугольника ВСК, поэтому
МР║ВС и МР = 1/2 ВС = 6 см
МР║ВС, ВС║AD, ⇒ МР║AD.
Значит, MPDA трапеция. А так как МА = PD = 5 см, то
MPDA - равнобедренная трапеция.
2) Проведем высоты трапеции МН и PL. MPLH - прямоугольник, так как у него все углы прямые, тогда
HL = MP = 6 см.
ΔАМН = ΔDPL по гипотенузе и катету (∠АНМ = ∠DLP = 90°, так как проведены высоты, АМ = DP по условию и МН = PL как высоты), значит
АН = DL = (AD - HL)/2 = (12 - 6)/2 = 3 см
ΔАМН: прямоугольный, египетский, значит МН = 4 см.
Smpda = (MP + AD)/2 · MH = (6 + 12)/2 · 4 = 36 см²