В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
koshulinskayag
koshulinskayag
22.08.2022 12:29 •  Геометрия

Доказательство теоремы о площади равностороннего треугольника.

Показать ответ
Ответ:
tanya260516
tanya260516
15.06.2020 05:26
Площадь равностороннего треугольника находится по формуле
S = a²√3/4, где а - сторона треугольника.

Доказательство:
Проведем ВН - высоту равностороннего треугольника.
Пусть ее длина равна h. Высота в равностороннем треугольнике является и медианой. Тогда АН = НС = а/2.

Площадь треугольника можно найти по формуле
S = a·h/2
Из прямоугольного треугольника АВН по теореме Пифагора выразим высоту через сторону:
h² = a² - (a/2)² = a² - a²/4 = 3a²/4
h = √(3a²/4) = a√3/2

Подставим в формулу площади:
S = (a · a√3/2)/2
S = a²√3/4

Высоту через сторону можно было выразить иначе:
в равностороннем треугольнике углы равны 60°.
Из прямоугольного треугольника АВН по определению синуса:
sin∠A = h/a,
sin60° = √3/2
h = a·sin60° = a√3/2
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота