Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Все грани параллелепипеда - параллелограммы.
1. Ребра параллелепипеда, которые лежат на параллельных прямых (три группы таких ребер):
AB ║ CD ║ C₁D₁ ║ A₁B₁
AD ║ BC ║ B₁C₁ ║ A₁D₁
AA₁ ║ BB₁ ║ CC₁ ║ DD₁
2. Ребра параллелепипеда, которые лежат на скрещивающихся прямых:
АВ и A₁D₁; AB и B₁C₁; AB и CC₁; AB и DD₁;
AD и A₁B₁; AD и C₁D₁; AD и BB₁; AD и CC₁;
CD и A₁D₁; СD и B₁C₁; CD и AA₁; CD и BB₁;
BC и A₁B₁; BC и C₁D₁; BC и AA₁; BC и DD₁;
AA₁ и B₁C₁; AA₁ и C₁D₁;
BB₁ и A₁D₁; BB₁ и C₁D₁;
CC₁ и A₁B₁; CC₁ и A₁D₁;
DD₁ и A₁B₁; DD₁ и B₁C₁.
3. Грани параллелепипеда, принадлежащие параллельным плоскостям:
ABCD и A₁B₁C₁D₁;
AA₁B₁B и CC₁D₁D;
AA₁D₁D и BB₁C₁C.
4. По прямой В₁С₁ пересекаются грани A₁B₁C₁D₁ и BB₁C₁C.
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -