ΔАВС - равнобедренный ⇒ ∠А= ∠С - углы при основании равны АВ=ВС - боковые стороны равны АС - основание. По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см. Площадь треугольника можно найти по формуле Герона: S= √ (р *(р-а)(р-b)(р-с) ) р- полупериметр ; a,b,c - стороны треугольника ⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС) р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
Координаты вершин треугольника ABC: А(5; 8); В (3; 4), C (9; 6). Для треугольника ABC:
а) определить тип треугольника ABC.
Находим длины сторон.
АВ = √(4 + 16) = √20 = 2√5.
ВС = √(16 + 4) = √20 = 2√5.
АС = √(36 + 4) = √40 = 2√10. Треугольник равнобедренный.
б) если известно, что КC является медианой, то найти координаты точки K.
Точка К - это середина стороны АВ: А(5; 8); В (3; 4) .
К((5+3)/2=4; (8+4)/2=6) = (4; 6).
в) Найдите площадь треугольника ABC.
Применим формулу Герона. Но так как длины сторон содержат корни,то примем округлённые значения.
АВ (c) = 4,4721, ВС(a) = 4,4721, АС (b) = 6,3246.
Полупериметр р = 7,6344.
Получаем S = 10.
∠А= ∠С - углы при основании равны
АВ=ВС - боковые стороны равны
АС - основание.
По условию ∠А= 2∠В ⇒ ∠А =∠C > ∠В
Напротив большего угла лежит большая сторона, а напротив большей стороны - больший угол ⇒ АВ=ВС = 16 см , АС = 4 см.
Площадь треугольника можно найти по формуле Герона:
S= √ (р *(р-а)(р-b)(р-с) )
р- полупериметр ; a,b,c - стороны треугольника
⇒ т.к. ΔАВС - равнобедренный ⇒ S= √ р *2(р-АВ)(р-АС)
р= (АВ+ВС+АС)/2 = (16*2+4)/2 = 18 см
S= √(18*2(18-16)(18-4) ) = √(18*2*2*14 ) = √1008 =√(144*7)= 12√7 см
ответ: S = 12√7 см.