До кола з центром о проведено дотичну в точці а і на ній позначено точку в так, що кут АВО дорівнює 30° . Знайдіть довжину відрізка ОВ , якщо радіус кола 7см
Предположим, что таких сфер конечное количество. Выберем сферу с самым большим радиусом R. Пусть расстояние от центра сферы до плоскости окружности равно d. Тогда расстояние от центра этой сферы до любой из точек окружности равно R=√(r²+d²)
Восстановим перпендикуляр OH к плоскости окружности из ее центра O так, что OH=d1>d. Тогда расстояние от H до любой точки окружности равно R1=√(d1²+r²). Построим сферу с центром в H и радиусом R1. Из наших расчетов эта сфера будет проходить через исходную окружность. Осталось заметить, что R1=√(d1²+r²)>√(d²+r²)=R по построению, т.е. мы построили сферу, проходящую через данную окружность, с радиусом, большим R, несмотря на то, что по предположению это была сфера с самым большим радиусом, и при этом проходящая через данную окружность. Значит наше предположение неверно и таких сфер бесконечное количество.
1. число должно делится на 4, т.к у ромба все стороны равны.
2. два угла по 65°=130°, (360-130)/2=115°
3.формула периметра параллелограмма по Р=2(х+у), отсюда у=(Р-2х)/2
4. диагонали параллелограмма при пересечении образуют со сторонами равнобедренные треугольники. У равнобедренных треугольников углы при основании равны. Имеем два угла по 20° , значит оставшийся угол равен (180-20-20)=140; (180- это сумма всех углов любого треугольника)
5. Если диагональ перпендикулярна стороне, значит она образует с этой стороной угол 90°. Второй угол дан по условию -20°, Третий угол =(180-90-20) =70°
Бесконечно много.
Объяснение:
Предположим, что таких сфер конечное количество. Выберем сферу с самым большим радиусом R. Пусть расстояние от центра сферы до плоскости окружности равно d. Тогда расстояние от центра этой сферы до любой из точек окружности равно R=√(r²+d²)
Восстановим перпендикуляр OH к плоскости окружности из ее центра O так, что OH=d1>d. Тогда расстояние от H до любой точки окружности равно R1=√(d1²+r²). Построим сферу с центром в H и радиусом R1. Из наших расчетов эта сфера будет проходить через исходную окружность. Осталось заметить, что R1=√(d1²+r²)>√(d²+r²)=R по построению, т.е. мы построили сферу, проходящую через данную окружность, с радиусом, большим R, несмотря на то, что по предположению это была сфера с самым большим радиусом, и при этом проходящая через данную окружность. Значит наше предположение неверно и таких сфер бесконечное количество.
1)В; 2)Б; 3)Г; 4)В: 5)Б
Объяснение:
1. число должно делится на 4, т.к у ромба все стороны равны.
2. два угла по 65°=130°, (360-130)/2=115°
3.формула периметра параллелограмма по Р=2(х+у), отсюда у=(Р-2х)/2
4. диагонали параллелограмма при пересечении образуют со сторонами равнобедренные треугольники. У равнобедренных треугольников углы при основании равны. Имеем два угла по 20° , значит оставшийся угол равен (180-20-20)=140; (180- это сумма всех углов любого треугольника)
5. Если диагональ перпендикулярна стороне, значит она образует с этой стороной угол 90°. Второй угол дан по условию -20°, Третий угол =(180-90-20) =70°