Длины подошв трапеции ADEC равны 9см и 5см, а длины боковых стенок-4см и 6см. Растяжения боковых стенок пересекаются в точке В. Найдите периметр треугольника АВС.
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
По определению параллелограмма BC∥AD, а прямая BD является их секущей. По свойству секущей ∠ADB=∠DBC=45°. ΔABD по определению равнобедренный, и имеет основание AD, а поскольку в равнобедренных треугольниках углы при основании равны, ∠BAD=45°. По свойству углов параллелограмма при стороне, ∠ABС=135° => ∠ABD=90°. Соответственно, по свойству противоположных углов параллелограмма, ∠BDC=90° и ∠BCD=45°. Проведём высоту DH к стороне BC в треугольнике ΔBDC. Поскольку он равнобедренный, его высота совпадает с медианой и биссектрисой, то есть DH=BH=CH=a и ∠BDH=∠CDH=∠BDC/2=45°. ΔDHC равнобедренный и прямоугольный, а, значит, по теореме Пифагора, 2a²=CD²=18² => a=9√2. BC=BH+CH=2a, DH=a BC - основание параллелограмма, а DH - его высота. Площадь параллелограмма равна их произведению по одной из расчётных формул, то есть BC*DH=2a²=18²=324
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
324
Объяснение:
По определению параллелограмма BC∥AD, а прямая BD является их секущей. По свойству секущей ∠ADB=∠DBC=45°. ΔABD по определению равнобедренный, и имеет основание AD, а поскольку в равнобедренных треугольниках углы при основании равны, ∠BAD=45°. По свойству углов параллелограмма при стороне, ∠ABС=135° => ∠ABD=90°. Соответственно, по свойству противоположных углов параллелограмма, ∠BDC=90° и ∠BCD=45°. Проведём высоту DH к стороне BC в треугольнике ΔBDC. Поскольку он равнобедренный, его высота совпадает с медианой и биссектрисой, то есть DH=BH=CH=a и ∠BDH=∠CDH=∠BDC/2=45°. ΔDHC равнобедренный и прямоугольный, а, значит, по теореме Пифагора, 2a²=CD²=18² => a=9√2. BC=BH+CH=2a, DH=a BC - основание параллелограмма, а DH - его высота. Площадь параллелограмма равна их произведению по одной из расчётных формул, то есть BC*DH=2a²=18²=324