Четырехугольник AMNP - параллелограмм, поскольку его противоположные стороны попарно параллельны по условию. Пусть PN=2x, MN=3x (из условия, что PN:MN=2:3). Рассмотрим треугольники АВС и PNC. Они подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого: - угол С - общий; - углы А и CPN равны как соответственные углы при пересечении двух параллельных прямых АВ и PN секущей АС. Для подобных треугольников можно записать соотношение сходственных сторон: PN : AB = PC : AC. Отсюда РС= PN*AC:AB. РС=2х*15:10=3х, но и АР=3х также (противоположные стороны параллелограмма MN и АР равны). Тогда АР+РС=15 3х+3х=15 х=2,5 АР=MN=3*2.5=7.5 см; AM=PN=2*2.5=5 см
Представим, что мы повернули эту пирамиду на грань АSD как на основание). Тогда очевидно, что расстояние (перпендикуляр) от С до плоскости этой грани - высота получившейся пирамиды.
КМ параллельна АS. ⇒треугольники АSС и КМС подобны с коэффициентом подобия (3+2):2=2,5
Тогда и треугольники АSB и КМН параллельны и подобны, а коэффициент их подобия тоже 2,5
Площади подобных фигур относятся как квадрат коэффициента их подобия.
S (АSB): S(КМН)=(АС:КС)²=6,25
S (АSB)=S(КМН)*6,25=125 см²
V=hS:3
h=3V:S=300:125=2,4 см
ответ: расстояние от С до плоскости грани АSB=2,4 см
- угол С - общий;
- углы А и CPN равны как соответственные углы при пересечении двух параллельных прямых АВ и PN секущей АС.
Для подобных треугольников можно записать соотношение сходственных сторон:
PN : AB = PC : AC. Отсюда РС= PN*AC:AB.
РС=2х*15:10=3х, но и АР=3х также (противоположные стороны параллелограмма MN и АР равны). Тогда
АР+РС=15
3х+3х=15
х=2,5
АР=MN=3*2.5=7.5 см; AM=PN=2*2.5=5 см
Представим, что мы повернули эту пирамиду на грань АSD как на основание). Тогда очевидно, что расстояние (перпендикуляр) от С до плоскости этой грани - высота получившейся пирамиды.
КМ параллельна АS. ⇒треугольники АSС и КМС подобны с коэффициентом подобия (3+2):2=2,5
Тогда и треугольники АSB и КМН параллельны и подобны, а коэффициент их подобия тоже 2,5
Площади подобных фигур относятся как квадрат коэффициента их подобия.
S (АSB): S(КМН)=(АС:КС)²=6,25
S (АSB)=S(КМН)*6,25=125 см²
V=hS:3
h=3V:S=300:125=2,4 см
ответ: расстояние от С до плоскости грани АSB=2,4 см