Даны точки a(0; -2; 0) и b(1; 2; -1) o-начало координат 1)на оси z найдите точку m(0; 0; z) равноудаленную от точек a и b 2)в плоскости xy найдите точку c(x; y; z),такую ,что бы векторы co и ab были равными 3) при каком значении x вектор m (z; 1; 2)будет перпендикулярен вектору ва?
Вектор АВ{Xb-Xa;Yb-Ya;Zb-Za} ={1;4-1}.
Середина вектора АВ - точка Р((1+0)/2;(2-2)/2; (0-1)/2) или
Р(0,5;0;-0,5)
Теперь надо найти точку М(0;0;z), чтобы вектор МР был перпендикулярен вектору АВ.
Вектор МР{0,5-0;0-0;z-(-0,5)} = {0,5;0;z+0,5}.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение векторов AB{1;4;-1} и MP{0,5;0;z+0,5}:
(AB*MP) = Xab*Xco+Yab*Yco+Zab*Zco =1*0,5+4*0+(-1)*(z+0,5).
Условие: 0-z=0 => z=0.
ответ: z=0.
2) Векторы СО и АВ будут равными, если они сонаправлены и равны по модулю. Сонаправленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН.
Вектор АВ{1-0;2-(-2);-1-0} = {1;4;-1},
вектор CO{0-x;0-y;0-0} = {-x;-y;0}.
|AB|=√(1²+4²+(-1)²)=√18.
|CO|=√((-x)²+(-y)²+0²). Если модули равны, то и квадраты модулей равны.
x²+y² = 18. -x/1=-y/4 y=4x.
x²+16x²=18 x²=18/17. x≈1,03
y²=18-18/17 =288/17 ≈17. y≈4,16.
CO={1,03;4,16;0}
3) Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов ВА{-1;-4;1} и m{Xm;1;2}:
(ВА*m)= 1*Xm+4*Ym+Zab*Zm Или
(BA*m)= (-1)*Xco-4*1+1*2=0. => Xm= -2.
ответ: Xm= -2.