Даны параллельные прямые a и b, точка A (на одной из прямых) и отрезок n. Найди точку на другой прямой на расстоянии, равном длине данного отрезка n от данной точки A. Даны следующие возможные шаги построения:
1. провести прямую. 2. Провести луч. 3. Провести отрезок. 4. Провести окружность с данным центром и радиусом. 5. На данном луче от его начала отложить отрезок, равный данному. 6. Построить перпендикулярную прямую. Напиши номера шагов, которые необходимы для решения задания. Сколько решений может иметь это задание (возможно несколько вариантов ответа
Обозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Объяснение:
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
Проверим:
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
Проверим:
30*+150*+30*+150*=60*+300*=360*. Все верно.