Даны параллельные плоскости α и β. Точки A и B находятся в плоскости β, а точки C и D — в плоскости α. Длина отрезка AC= 9, длина отрезка BD= 11. Сумма проекций этих отрезков на плоскости α равна 10.
Высчитай длину проекций обоих отрезков.
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести AE и BF к плоскости α.
2. AE и BF .
3. AE и BF как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF. Длина CE= .
3 ед. и 7 ед.
Объяснение:
1. Чтобы определить проекции отрезков AC и BD, из точек A и B надо провести перпендикуляры AE и BF к плоскости α.
2. AE и BF - катеты прямоугольных треугольников АЕС и BFD.
3. AE и BF равны, как отрезки параллельных прямых между параллельными плоскостями.
4. Длины проекций CE и FD высчитаем из треугольников ACE и BDF.
CE+FD =10 по условию. => FD = 10 - CЕ.
По Пифагору АЕ² = АС² - СЕ² и BF² = BD² - FD² =>
81 - СЕ² = 121 - FD².
(10 - CE)² - CE² = 40 ед. =>
Длина CE = 3 ед.
5. Длина FD = 10-3 = 7 ед.