Обозначим стороны квадрата х, по теореме Пифагора х²+х²=32. Отсюда х=4. Вертикальная сторона квадрата является его высотой, т.е. высота квадрата равна 4.Горизонтальная сторона квадрата - является хордой, отсекающей от окружности основания дугу в 60 градусов. Соединим концы хорды с центром окружности, получим равнобедренный треугольник, т.к. боковые стороны равны-радиусы. Угол при вершине О-центральный, поэтому он равен 60 градусам. Углы при основаниях равны, т.к. треугольник равнобедренный. Сумма этих углов 180-60=120 градусам. Значит эти углы равны 120:2=60 градусам. Тогда этот треугольник-равностронний, значит все стороны равны. А боковые стороны - это радиусы. Значит радиус равен 4. Найдем сумму двух оснований цилиндра π*4²+ π*4²=32π.Площадь боковой поверхности равна произведению длины окружности на высоту цилиндра=2*π*4*4=32π,S полной поверхности цилиндра= 32π+32π=64π cm^2
Найти: СН.
Т.к ∠С = 90°, то (треугольник)АВС - прямоугольный. АВ - гипотенуза, АС и ВС - катеты, СН - высота.
За свойством прямоугольного треугольника (сторона напротив угла 30 градусов):
ВС = 1/2 AB = 36 Sqrt3/2 = 18 Sqrt3 (см).
За теоремой о высоте, проведённой из вершины прямого угла:
ВН = ВС^2/AB = (18 Sqrt3)^2/36 Sqrt3 = 324 * 3 : 36 Sqrt3 = 9 * 3 : Sqrt3 = 27/Sqrt3 (см).
За теоремой Пифагора:
ВС^2 = BH^2 + CH^2.
Отсюда:
СН^2 = BC^2 - BH^2 = (18 Sqrt3)^2 - (27/Sqrt3)^2 = (324 * 3) - (729/3) = 972 - 243 = 729 (см).
СН = Sqrt729 = 27 см
ответ: СН = 27 см