Дано відрізок ВС, кінці якого мають координати В (3;5), С (-2;1). Побудуйте відрізок симетричний відрізку ВС відносно початку координат та знайдіть координат ВС
Из точки а к плоскости проведены перпендикуляр ао и две равные наклонные ав и ас.известно,что вс=во.найдите углы треугольника вос.решение а /| \ в / | \с оав=асвс=воесли две стороны во и вс равны, значит со=вс=во(только у меня получилось, угол вос=180 град, но по факту 60 град)из этого следует, что всо - треугольник равностороннйи, а значит углы равны 60 град
Так как в параллелограмме противоположные углы равны, а сумма внутренних углов равна 360°, то вторая пара углов:
(360 - 2·60) : 2 = 120°
Так как меньшая диагональ делит бо'льшие углы параллелограмма, то:
х + 3х = 120
х = 30° 3х = 90°
Таким образом, параллелограмм состоит из двух прямоугольных треугольников с общим катетом, в качестве меньшей диагонали.
Так как меньший угол треугольника 30°, то катет, лежащий напротив этого угла равен половине гипотенузы. Обозначим их: х и 2х, соответственно.
Тогда, учитывая, что периметр параллелограмма равен 360 (ед.):
2х + 4х = 360
х = 60 (ед.) 2х = 120 (ед.)
ответ: 60 ед.; 60 ед.; 120 ед.; 120 ед.