Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.