AB=10 см. ND1/NB=2/3 (по условию). BD1 = корень из(BD^2 + DD1^2) ABCD - квадрат, а DB его диагональ => BD = 10корней из 2. BD1 = корень из (200 +100) = 10корней из 3. ND1/NB=2/3 =>
ND1 = 2NB/3 => 2NB/3 +NB = 10корней из 3, отсюда NB = 6корней из 3 => ND1 = 10корней из 3 - 6корней из 3 = 4корней из 3. Теперь проведем перпендикуляр к основанию ABCD - NM. M принадлежит стороне прямоугольника треугольника BDD1 BD => треугольник DNM подобен треугольнику BDD1 => BN/NM = BD1/DD1 => 6корней из 3/NM = 10корней из 3 / 10 =>NM =6 корней из 3 / корень из 3 = 6. Расстояние от точки N до плоскости ABCD = 6 см.
Воспользуемся формулами :
формула радиуса по стороне :
R = (a*корень из 3) / 2
формула высоты равностороннего треуг :
h = (a*корень из 3)/2
выразим сторону через радиус окружности: 3R = a корень из 3
a = 3R/корень из 3
a = 3 * 8/корень из 3 = 24/корень из 3
найдем высоту :
h = [(24/корень из 3) * корень из 3]/2
корень из 3 сокращается = 24/2 = 12
Можно вычислить еще по теореме Пифагора ответ будет тот же я проверял, если есть желание считать
гипотенуза = 24/корень из 3, катет 12/корень из 3 высота будет другой катет
AB=10 см. ND1/NB=2/3 (по условию). BD1 = корень из(BD^2 + DD1^2) ABCD - квадрат, а DB его диагональ => BD = 10корней из 2. BD1 = корень из (200 +100) = 10корней из 3. ND1/NB=2/3 =>
ND1 = 2NB/3 => 2NB/3 +NB = 10корней из 3, отсюда NB = 6корней из 3 => ND1 = 10корней из 3 - 6корней из 3 = 4корней из 3. Теперь проведем перпендикуляр к основанию ABCD - NM. M принадлежит стороне прямоугольника треугольника BDD1 BD => треугольник DNM подобен треугольнику BDD1 => BN/NM = BD1/DD1 => 6корней из 3/NM = 10корней из 3 / 10 =>NM =6 корней из 3 / корень из 3 = 6. Расстояние от точки N до плоскости ABCD = 6 см.