Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.
Как известно, высота равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна её средней линии ( полусумме оснований).
Тогда h=(8+10):2=9 см
S=0,5•(8+10)•9=81 см²
Подробнее:
Диагонали равнобедренной трапеции равны. AC=BD
Так как они пересекаются под прямым углом, треугольники ВОС и АОД - равнобедренные прямоугольные, и тогда ВО=OC=ВС•sin45º=4√2 AO=OД=АД•sin45º=5√2, откуда
АС=ВД=4√2+5√2=9√2
Проведем высоту ВН.
НД=полусумме оснований (свойство равнобедренной трапеции)
. Т.к. угол ВДН=45°, треугольник ВНД- равнобедренный, ВН=НД=9√2*sin 45º=9
S АВСД=произведению полусуммы оснований на высоту.
S АВСД=0,5•(8+10)•9=81 см²
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.