1. Треугольник прямоугольный, значит, один угол равен 90°. Тогда другой равен 90° - 30° = 60°. Катет, лежащий напротив угла в 30°, равен половине гипотенузы. Тогда гипотенуза равна 2•4,5см = 9 см.
2. Найдём другой угол прямоугольного треугольника. Она равен 90° - 45° = 45°. Тогда у данного треугольника два равных угла => она равнобедренный и его катеты равны. Тогда каждый из них равен 34см•1/2 = 17 дм.
3. Нельзя, т.к. у равных треугольников соответственно равны все элементы. У первого треугольника угол равен 35°. У другого треугольника соответственные ему угол равен 90° - 60° = 30°. Как видно, углы не равны, значит, треугольники тоже не равны.
Пояснення: Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.
Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.
А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.
Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.
Выразим площадь прямоугольника АВС: формула Герона на фото
площадь прямоугольника АВС=192
радіус вписаного кола = площа поділити на пів периметр =192/32=2,875
Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=2,875
Катет, лежащий напротив угла в 30°, равен половине гипотенузы. Тогда гипотенуза равна 2•4,5см = 9 см.
2. Найдём другой угол прямоугольного треугольника. Она равен 90° - 45° = 45°. Тогда у данного треугольника два равных угла => она равнобедренный и его катеты равны. Тогда каждый из них равен 34см•1/2 = 17 дм.
3. Нельзя, т.к. у равных треугольников соответственно равны все элементы.
У первого треугольника угол равен 35°.
У другого треугольника соответственные ему угол равен 90° - 60° = 30°.
Как видно, углы не равны, значит, треугольники тоже не равны.
Відповідь: 2,875
Пояснення: Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.
Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.
А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.
Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.
Выразим площадь прямоугольника АВС: формула Герона на фото
площадь прямоугольника АВС=192
радіус вписаного кола = площа поділити на пів периметр =192/32=2,875
Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=2,875