№1. Треугольники ВКМ и BKN равны по стороне и двум прилежащим углам.
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN).
№2. Во влажениях!
№3. В Δ АВС угол АВС равен 90-15=75° ВΔ ВАД угол АВД равен 75-15=60 ВДА=90-60=30° АВ, как противолежащая углу 30, равна половине ВД. ВД=2*3=6 см Рассмотрим Δ ВДС. В нем равные углы при основании ВС. Поэтому Δ ВДС - равнобедренный. ДС=ВД=6 см. Сумма двух сторон треугольника должна быть больше третьей стороны. Сторона ВД+ДС=12см ВС < 12см Длина стороны ВС не может быть равна 12 см
№1. Треугольники ВКМ и BKN равны по стороне и двум прилежащим углам.
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN).
№2. Во влажениях!
№3. В Δ АВС угол АВС равен
90-15=75°
ВΔ ВАД угол АВД равен
75-15=60
ВДА=90-60=30°
АВ, как противолежащая углу 30, равна половине ВД.
ВД=2*3=6 см
Рассмотрим Δ ВДС.
В нем равные углы при основании ВС.
Поэтому Δ ВДС - равнобедренный.
ДС=ВД=6 см.
Сумма двух сторон треугольника должна быть больше третьей стороны.
Сторона ВД+ДС=12см
ВС < 12см
Длина стороны ВС не может быть равна 12 см
Начнём с вычисления градусных мер нужных нам дуг.
Угол ВАС = 30⁰ равен половине градусной меры дуги на которую он опирается, значит дуга ВС=60⁰.
Угол ВОС = 60⁰, как центральный угол, опирающийся на дугу ВС, а углы АОВ и АОС равны (360-60)/2=150⁰, поскольку АВ=ВС.
Теперь переходим к выражению площадей:
Площадь всего круга:
Площадь одного из заштрихованных сегментов:
, где α- градусная мера дуги сегмента в радианах (150⁰=5π/6)
Площадь интересующей нас фигуры (на рисунке- красным цветом) есть разность между площадью всего круга и двух сегментов (штриховка):
Таким образом отношение площади той части круга, которая заключена в этом угле (на рисунке- красным), к площади всего круга будет равно:
Ну и, если всё правильно, как "Лучшее решение" не забудь отметить, ОК?!... ;)))