Данны параллелограмм mnop и трапеция mnek с основаниями ek не лежащие в одной плоскости основания трапеции mn =45 см ek=55 см и можно вписать в нее окружность найдите периметр треугольника
Треуго́льник — это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой Периметр треугольника равен сумме длин его сторон: ной прямой, и трёх отрезков, соединяющих эти три точки. P=a+b+cТреугольники называются равными, если равны их стороны. Теорема-это описание свойства геометрических понятий.Док-во теоремы-это поэтаптное рассуждение правильности заключения теоремы исходя из ее условийПерпендикуляром, опущенным из данной точки данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведенный из этой вершины, к прямой, которая содержит противолежащую сторону треугольника.
Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину с серединой противоположной стороны треугольника. (Три)Биссектрисой треугольника, проведенной из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой противолежащей стороны.
Треугольник называется равнобедренным , если у него две стороны равны. Эти стороны называются боковыми , а третья сторона – геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности. Радиус — отрезок прямой, соединяющий центр окружности с какой-либо её точкой, а также длина этого отрезка. Обычно обозначается R.Диаметр — отрезок прямой, соединяющий пару наиболее удаленных друг от друга точек окружности, а также длина этого отрезка. Диаметр всегда проходит через центр окружности. Обычно обозначается D или Ø. Диаметр равен удвоенному радиусу окружности: D = 2R, R = D/2.Отрезок, соединяющий две точки окружности, называется хордойокружности.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину с серединой противоположной стороны треугольника.
(Три)Биссектрисой треугольника, проведенной из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой противолежащей стороны.
Треугольник называется равнобедренным , если у него две стороны равны. Эти стороны называются боковыми , а третья сторона – геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности. Радиус — отрезок прямой, соединяющий центр окружности с какой-либо её точкой, а также длина этого отрезка. Обычно обозначается R.Диаметр — отрезок прямой, соединяющий пару наиболее удаленных друг от друга точек окружности, а также длина этого отрезка. Диаметр всегда проходит через центр окружности. Обычно обозначается D или Ø. Диаметр равен удвоенному радиусу окружности: D = 2R, R = D/2.Отрезок, соединяющий две точки окружности, называется хордойокружности.
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.