Дан треугольник ABC. AB=10см, BC=6см, AC=8см. Сторонам AB и AC принадлежат точки Q и R соответственно. Точка P лежит в треугольнике на расстоянии 6см от точки A. Углы AQP и ARP равняются 90°. Найти QR.
OK и ON- радиусы одной окружности=> они равны=> треугольник NOK- равнобедренный и его углы при основании (угол x и угол KNO) равны. Теперь найдем угол KON. Он смежный с углов MOK, а смежные углы дают в сумме 180 градусов. То есть угол KON= 180-78=102 градуса. Сумма углов треугольника равна 180 градусов. Угол KON+ угол KNO+ угол x= 180 градусов=> угол KNO+ угол x=180- угол KON=180-102=78 градусов. Углы KNO и x равны=> их сумму можно записать как 2KNO или 2x. Получили уравнение: 2x=78, откуда x= 39.
ответ: угол x=39 градусов.
Есть и другой, более рациональный решения:
Угол MOK- внешний для треугольника KON. А внешний угол равен сумме двух внутренних углов треугольника, не смежных с ним => угол KON+ угол x =угол MOK= 78 градусов. Далее, также, как и в доказываем равенство углов KON и x. То есть сумма этих углов будет равна 2x. В итоге получаем то же самое уравнение и, следовательно, тот же самый ответ.
216см2
Объяснение:
Центр окружности, описанной около равнобедренной трапеции, который находится на большем основании, делит его на две равные части:
AO=OD=R=1/2×AD=1/2×26=13 см
2. В равнобедренной трапеции AE и FD можно найти, зная основания:
AE=FD=(AD−BC)/2=(26-10)/2=8
Вычисляем EO и OF:
EO=OF=R−AE=13−8=5 см
3. Так как ΔEBO — прямоугольный, то высоту трапеции BE можно найти по теореме Пифагора:
BE=R2−EO2−−−−−−−−√=132−52−−−−−−−√=169−25−−−−−−−√=144−−√=12 см
4. Вычисляем площадь трапеции:
S=AD+BC2×BE=(26+10)/2×12=18×12=216см2
OK и ON- радиусы одной окружности=> они равны=> треугольник NOK- равнобедренный и его углы при основании (угол x и угол KNO) равны. Теперь найдем угол KON. Он смежный с углов MOK, а смежные углы дают в сумме 180 градусов. То есть угол KON= 180-78=102 градуса. Сумма углов треугольника равна 180 градусов. Угол KON+ угол KNO+ угол x= 180 градусов=> угол KNO+ угол x=180- угол KON=180-102=78 градусов. Углы KNO и x равны=> их сумму можно записать как 2KNO или 2x. Получили уравнение: 2x=78, откуда x= 39.
ответ: угол x=39 градусов.
Есть и другой, более рациональный решения:
Угол MOK- внешний для треугольника KON. А внешний угол равен сумме двух внутренних углов треугольника, не смежных с ним => угол KON+ угол x =угол MOK= 78 градусов. Далее, также, как и в доказываем равенство углов KON и x. То есть сумма этих углов будет равна 2x. В итоге получаем то же самое уравнение и, следовательно, тот же самый ответ.
Надеюсь