А) (если второй признак- по стороне и двум прилежащим к ней углам) Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны. В первом случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) <В=<С= (180-<А)/2 <К=<О=(180-<М)/2 А так как <А=<М, то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам. Во втором и третьем случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам Б) (если третий признак - по трем сторонам) 1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО Значит, треугольники АВС и МКО равны по трем углам
Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны.
В первом случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
<В=<С= (180-<А)/2
<К=<О=(180-<М)/2
А так как <А=<М, то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам.
Во втором и третьем случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам
Б) (если третий признак - по трем сторонам)
1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО
Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО
Значит, треугольники АВС и МКО равны по трем углам
--- 1 ---
Площадь по формуле Герона
полупериметр
p = (√3 + 2 + 3)/2 = (√3 + 5)/2 см
Площадь
S² = p*(p-a)*(p-b)*(p-c)
S² = (√3 + 5)/2*((√3 + 5)/2-√3)*((√3 + 5)/2-2)*((√3 + 5)/2-3)
S² = 1/2⁴*(√3 + 5)*(5 - √3)*(√3 + 1)*(√3 - 1)
S² = 1/2⁴*(5² - (√3)²)*((√3)² - 1²)
S² = 1/2⁴*(25 - 3)*(3 - 1)
S² = 1/2⁴*22*2
S² = 1/2²*11 = 11/4
S = √11/2 см²
--- 2 ---
Радиус описанной окружности
R = abc/(4S)
R = √3*2*3/(4√11/2) = 3√(3/11) см
--- 3 ---
Гипотенуза с - ребро, высота h - катет против угла в 30°, радиус описанной окружности - второй катет
Теорема Пифагора
c² = h² + R²
Гипотенуза в 2 раза длиннее катета против угла в 30°
(2h²) = h² + R²
3h² = R²
h = R/√3
h = 3√(3/11)/√3 = 3/√11 см
--- 4 ---
Объём
V = 1/3*S*h
V = 1/3 * √11/2 * 3/√11 = 1/2 см³