Треугольник с вершинами в серединах сторон состоит из средних линий. Средняя линия соединяет середины двух сторон, параллельна третьей стороне и равна ее половине. Следовательно периметр теругольника, образованного средними линиями (P_m=16) равен половине периметра исходного треугольника. P= 2P_m =16*2 =32
3x+4x+5x=32 <=> 12x=32 <=> x=32/12=8/3
Cтороны равны a=3x=8 b=4x=32/3 c=5x=40/3 (гипотенуза, большая сторона)
Треугольник с соотношением сторон 3:4:5 - прямоугольный (египетский треугольник). S= ab/2 =8*32/3*2 =128/3 ~42,7 (см^2)
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Средняя линия соединяет середины двух сторон, параллельна третьей стороне и равна ее половине.
Следовательно периметр теругольника, образованного средними линиями (P_m=16) равен половине периметра исходного треугольника.
P= 2P_m =16*2 =32
3x+4x+5x=32 <=> 12x=32 <=> x=32/12=8/3
Cтороны равны
a=3x=8
b=4x=32/3
c=5x=40/3 (гипотенуза, большая сторона)
Треугольник с соотношением сторон 3:4:5 - прямоугольный (египетский треугольник).
S= ab/2 =8*32/3*2 =128/3 ~42,7 (см^2)
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301