Дан остроугольный треугольник ABC с центром описанной окружности в точке О. Обозначьте через K основание перпендикуляра, опущенного из точки А на прямую СО. Пусть перпендикуляр опущенный из точки К на прямую ВС пересекает прямую АВ в точке N. Докажите что прямые CN и AB перпендикулярны.
проблема состояла в том, что другие предложенные решения содержали тригонометрические выкладки, которые не под силу 9-класснику...
потому "родилась" идея использовать поворот (материал 9 класса)
угол АКВ -это внешний угол для треугольника DKA, значит, сумма углов KDA+KAD = 60°, это вписанные (для окружности) углы, т.е. сумма дуг, на которые опираются эти углы ∪ВА+∪CD = 120°
и мы никогда не найдем отдельные слагаемые (эти углы), т.к. данных не достаточно, потому и возникла мысль использовать именно дугу, равную сумме дуг... т.е. нужно повернуть треугольник с вершиной в центре окружности (центральным углом, соответствующим дуге АВ) с целью получить дугу в 120° (точки С и В совпадут)
получим 4-угольник с двумя известными сторонами (22 и 34) и
двумя известными (и даже равными) углами по 120°...
остальное по теореме косинусов...
MC=MA=MB=4 СМ
AB=6 СМ
Найти:
MN- ?
Решение
1) Соединяем все точки, чтобы получить правильную пирамииду MABC.
Затем проводим из точки M перпендикуляр MN на плоскость ABC,который нам нужно найти.
2) Описываем окружность у тр. ABC. Так как он правильный, то точка N становится центром этой окружности.
Следовательно NA=NB=NC= R(радиусу окр)
3) ФОРМУЛА РАДИУСА: R=a*(корень из->)3/3
Решаем: R=6*(корень из ->)3/3 = 2(корень из ->)3 (см)
4)Так как треугольник AOM прямоугольнвй, то находим MN :
По теореме Пифагора : c^2=a^2+b^2
MN= (корень из ->)(AM^2+AN^2)= (корень из ->) (16-12)= (корень из ->)=2 (cм)
ответ: MN= 2 см.
Сорян, не могу сфоткать рисунок, думаю ,и без этого более менее понятно. Такая в общем там пирамида получается и AOM- c прямым углом.