1. Расстоянием между параллельными плоскостями является расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. ⇒
ВС - перпендикуляр, и треугольник АВС - прямоугольный. Так как все точки одной из параллельных плоскостей находятся на одинаковом расстоянии от другой плоскости, то АА₁=ВС, и прямоугольные треугольники АВА₁ и АВС равны, т.к. у них общая гипотенуза и по равному катету. ⇒ АС=А₁В.
Определение: Проекция точки на плоскость -- это основание перпендикуляра, опущенного из этой точки на плоскость. Множество проекций точек прямой на плоскость образуют проекцию этой прямой.⇒ А₁В и АС- проекции отрезка АВ на каждую из плоскостей.
Стороны треугольника АВС составляют одну из Пифагоровых троек, где стороны прямоугольного треугольника - целые числа. В этой тройке больший катет равен 12 ( можно проверить по т. Пифагора).
Проекции отрезка АВ на параллельные плоскости равны. АС=А₁В=12
-----
2.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. Следовательно, углы ВВ₁А=СС₁А=90° В треугольниках АВВ₁ и АСС₁ гипотенузы равны по условию, равны и их острые углы: угол АВВ₁=90°- 40°=50°, угол АСС₁=90°-50°=40°. Следовательно, эти треугольники равны, и ВВ₁=АС₁. В треугольнике больше та сторона, что лежит против большего угла. СС₁>АС₁⇒ СС₁>ВВ₁
Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK. Периметр ABK P=AB+BK+AK; Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2 Т.к. AB=BC, AF=EC=AB/2=BC/2; Рассмотрим треугольники AFC и CEA Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA) Тогда углы EAC=FCA. Значит, угол BAE=BAC-EAC=BCF Углы FMA=EMC, как вертикальые Тогда углы AFM=180-FMA-FAM=MEC Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM) Тогда AM=MC => треугольник AMC - равнобедренный
Расстоянием между параллельными плоскостями является расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. ⇒
ВС - перпендикуляр, и треугольник АВС - прямоугольный. Так как все точки одной из параллельных плоскостей находятся на одинаковом расстоянии от другой плоскости, то АА₁=ВС, и прямоугольные треугольники АВА₁ и АВС равны, т.к. у них общая гипотенуза и по равному катету. ⇒ АС=А₁В.
Определение: Проекция точки на плоскость -- это основание перпендикуляра, опущенного из этой точки на плоскость. Множество проекций точек прямой на плоскость образуют проекцию этой прямой.⇒ А₁В и АС- проекции отрезка АВ на каждую из плоскостей.
Стороны треугольника АВС составляют одну из Пифагоровых троек, где стороны прямоугольного треугольника - целые числа. В этой тройке больший катет равен 12 ( можно проверить по т. Пифагора).
Проекции отрезка АВ на параллельные плоскости равны. АС=А₁В=12
-----
2.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. Следовательно, углы ВВ₁А=СС₁А=90°В треугольниках АВВ₁ и АСС₁ гипотенузы равны по условию, равны и их острые углы: угол АВВ₁=90°- 40°=50°, угол АСС₁=90°-50°=40°. Следовательно, эти треугольники равны, и ВВ₁=АС₁. В треугольнике больше та сторона, что лежит против большего угла.
СС₁>АС₁⇒ СС₁>ВВ₁
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный