Діагональ рівнобічної трапеції перпендикулярна до бічної сторони та відноситься до неї як 4 : 3. Більша основа трапеції дорівнює 50 см. Знайдіть середню лінію трапеції. Ребят скиньте решение задачи
Высота, проведённая к основанию, в равнобедренном треугольнике является также и биссектрисой, и медианой. Раз так вышло, что она биссектриса, то получается, что угол 120° она делит пополам. То есть 120° / 2 = 60.
Что ж, у нас получились 2 равных треугольника, рассмотрим правый треугольник.
Один из углов у него 90°, потому что высота. Второй угол у него 60°, потому что биссектриса. Отсюда можно найти третий его угол. Невообразимо сложными вычислениями ( 180 - ( 90 + 60 ) ) можно выяснить что третий угол будет 30°.
Так так, 30 градусов значит... Конечно же, все знают что против угла 30° лежит половина гипотенузы. А что у нас против 30° там? Посмотрим в задаче, ага... 12 см., значит гипотенуза 24 см. А гипотенуза, в данном случае, как раз таки и есть боковая сторона треугольника.
1. Описанная около данной нам правильной пирамиды сфера в сечении по диагонали основания пирамиды (квадрат) - это описанная около равнобедренного треугольника АМС окружность. Сторона треугольника АС это диагональ квадрата и равна 6√2. Стороны АМ и СМ - ребра пирамиды =5. Есть формула радиуса описанной около равнобедренного треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14. Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36. Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол. ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра). МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2). МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4. Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8. Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.
Раз так вышло, что она биссектриса, то получается, что угол 120° она делит пополам. То есть 120° / 2 = 60.
Что ж, у нас получились 2 равных треугольника, рассмотрим правый треугольник.
Один из углов у него 90°, потому что высота. Второй угол у него 60°, потому что биссектриса. Отсюда можно найти третий его угол. Невообразимо сложными вычислениями ( 180 - ( 90 + 60 ) ) можно выяснить что третий угол будет 30°.
Так так, 30 градусов значит... Конечно же, все знают что против угла 30° лежит половина гипотенузы. А что у нас против 30° там? Посмотрим в задаче, ага... 12 см., значит гипотенуза 24 см.
А гипотенуза, в данном случае, как раз таки и есть боковая сторона треугольника.
ответ: 24.
треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14.
Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36.
Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол.
ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра).
МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2).
МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4.
Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8.
Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.