Діагональ прямокутника дорівнює 10 см і утворює з стороною кут 400. Знайдіть площу прямокутника (відповідь округліть до десятих). Вказівка. Щоб знайти сторони прямокутника використайте означення тригонометричних функцій та таблицю.
Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.
Треугольники называются равными, если их можно совместить наложением. Т.е. все вершины, стороны и углы одного треугольника совпадут с соответствующими вершинами, сторонами и углами другого треугольника. Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия: AB=KL AC=KM ∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во: Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B. Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения.
1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О.
2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника.
3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α;
4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1.
5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника.
Это всё.
Очевидно, что если мы совместим вершины, то и остальные элементы треугольников совместятся.
Первый признак равенства треугольников: если 2 стороны и угол между ними одного треугольника соответственно равны 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано:
Обозначим вершины первого треугольника ABC, а второго - KLM. Пусть выполняются следующие условия:
AB=KL
AC=KM
∠A=∠K
Доказать, что треугольник ABC равен треугольнику KLM.
Д-во:
Т.к. ∠A = ∠K, то угол K можно наложить на угол A так, что вершина угла K совместиться с вершиной угла A, сторона угла (KL) совместится со стороной угла (AB), а сторона угла (KM) совместиться со стороной угла (AC).
Т.к. отрезок AB равен отрезку KL, а лучи (AB) и (KL) совпадают, то точка K должна совместиться с точкой B.
Аналогично, т.к. отрезок AC равен отрезку KM, то должны совместиться точки C и M.
Значит, все три вершины треугольника KLM совмещаются с тремя вершинами треугольника ABC. А значит, совмещаются и все остальные элементы этих треугольников.
А это и значит, что треугольник ABC равен треугольнику KLM.
Ч.т.д.