A. Продлим медиану АМ до пересечения с продолжением стороны ВС трапеции. Треугольники АМD и СMQ подобны по двум углам (<MCQ=<MDA как накрест лежащие при параллельных BQ и AD, <CMQ =<AMD как вертикальные). Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано). Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда 3BQ=4AD. BQ/AD=4/3. Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD, <ВРQ =<AРD как вертикальные). Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*PH. Площадь треугольника ABD равна Sabd=(1/2)*AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*MK. Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН. Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ. Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН. Площадь треугольника РМD равна Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH. (2/3)AD*BH=56 (дано). Тогда AD*BH=84. Sbcmp=(11/84)*84=11.
Дано: АВСD - ромб АВ=8 см. ∠А=120° Найти : S ромба- ? Решение: Площадь ромба можно найти по нескольким формулам. Поскольку нам известны сторона ромба и один из углов будем использовать следующую формулу: S = a² · sin α. 1. Найдем угол α. Для этого проведём диагональ АС из угла А. Получаем равнобедренный ΔАВС. По свойству ромба диагональ является биссектрисой угла. Значит углы (их два и они равны в равнобедренном треугольнике) при основании АС равен половине ∠А подставим значение :120°÷2=60°. Так как сумма углов в треугольнике равна 180° мы можем найти нужный нам для решения угол α (он же ∠В ромба) вычислим 180°- (60°+60°) = 60°. 2. Подставляем все данные в формулу и находим площадь ромба: S = AB² · sin α = 8² ·√3/2 = 64 ·√3/2 = 32√3 ответ: площадь ромба равна 32√3
Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано).
Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда
3BQ=4AD. BQ/AD=4/3.
Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD,
<ВРQ =<AРD как вертикальные).
Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*PH.
Площадь треугольника ABD равна Sabd=(1/2)*AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*MK.
Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН.
Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ.
Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН.
Площадь треугольника РМD равна
Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН
Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH.
(2/3)AD*BH=56 (дано). Тогда AD*BH=84.
Sbcmp=(11/84)*84=11.
АВ=8 см.
∠А=120°
Найти : S ромба- ?
Решение:
Площадь ромба можно найти по нескольким формулам. Поскольку нам известны сторона ромба и один из углов будем использовать следующую формулу: S = a² · sin α.
1. Найдем угол α. Для этого проведём диагональ АС из угла А. Получаем равнобедренный ΔАВС. По свойству ромба диагональ является биссектрисой угла. Значит углы (их два и они равны в равнобедренном треугольнике) при основании АС равен половине ∠А подставим значение :120°÷2=60°. Так как сумма углов в треугольнике равна 180° мы можем найти нужный нам для решения угол α (он же ∠В ромба) вычислим 180°- (60°+60°) = 60°.
2. Подставляем все данные в формулу и находим площадь ромба:
S = AB² · sin α = 8² ·√3/2 = 64 ·√3/2 = 32√3
ответ: площадь ромба равна 32√3