АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть:
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
угол прямоугольника равен 90°
диагональю он делится в отношении 4: 5, т.е. на углы
90: (4+5)*4=40°
и 90: (4+5)*5=50°
диагонали прямоугольника равны и точкой пересечения со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
углы треугольника с боковой стороной равны 40°,40°,100°
углы треугольника, образованного диагоналями с основанием, равны
50°,50°,80°.
ответ: диагонали прямоугольника при пересечении образуют углы 100°и 80°
АВ=CD так как противоположные стороны параллелограмма равны. Тогда 0,5*АВ=0,5*CD.
Так как К – середина АВ, то АК=0,5*АВ.
Так как Е – середина CD, то ЕС=0,5*CD.
Получим что АК=ЕС.
АК//ЕС, так как AB//CD, поскольку противоположные стороны параллелограмма параллельны.
Тогда получим что AECK – параллелограмм, так как противоположные стороны паралельны и равны. Следовательно АЕ//КС так как противоположные стороны параллелограмма параллельны.
По обобщённой теореме Фалеса: параллельные прямые отсекают на сторонах угла пропорциональные отрезки.
То есть:
Пусть СЕ=n, тогда ED=n так же, так как CE=ED. Тогда:
Пусть AK=m, тогда КВ=m так же, так как AK=KB.
Получим что PD:LP:BL=1:1:1, или иначе говоря отрезки равны.
ответ: 1