Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
Объяснение:
Осевое сечение конуса - равнобедренный треугольник с боковыми сторонами (образующие конуса), основание - диаметр основания.
Треугольник, образованный высотой, образующей и половиной диаметра - прямоугольный. Угол при вершине (90-60)=30° ⇒ половина диаметра (катет против угла 30°) равен половине образующей (гипотенуза). По т. Пифагора -
(2х)²=8²+х²
х²=8²/3
х=8/√3;
Площадь - S=a*h/2, где а=2х=16/√3, h=8;
S=16*8/(2√3)=64/√3=64√3/3.
Можно проще.
Угол при основании 60° ⇒ треугольник равносторонний.
S=h²/√3=8²/√3=64/√3=64√3/3.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
A1(0;0;1)
D1(0;1;1)
B1(1;0;1)
Вектора
АD1(0;1;1) длина √2
A1B(1:0;-1) длина √2
DD1(0;0;1)
Косинус Угла между AD1 и A1B
1/√2/√2=1/2 угол 60 градусов.
Уравнение плоскости А1ВС1
ах+by+cz+d=0
Подставляем координаты точек
c+d=0
a+d=0
a+b+c+d=0
Пусть d= -1 тогда с=1 а=1 b= -1
x-y+z-1=0
Синус угла между DD1 и А1ВС1
1/√3=√3/3 угол arcsin(√3/3)
Уравнение плоскости АВС
z=0
Плоскость АВ1D1
ax+by+cz=0
Подставляем координаты точек
а+с=0
b+c=0
Пусть с= -1 тогда а=1 b=1
x+y-z=0
Косинус угла между искомыми плоскостями
1/√3=√3/3 угол arccos(√3/3)