Рассмотрим у тетраэдра АВСК основание АВС и боковую грань КВС. Обозначим О - центр основания, Р - центр грани КВС. Все грани - правильные треугольники. Поэтому, высота основания АА1, проведенная из А на ВС, пройдет через точку О. Очевидно, высота КА1 грани КВС проведенная из К пройдет через точку Р и попадет именно в А1 на ребре ВС. Как мы знаем, в правильном треугольнике центр делит высоту в отношении 1 к 2. Так что ОА1 равна (АА1)/3. Аналогично A1Р равна (КА1)/3 . Угол PA1O общий для треугольников КАА1 и А1ОР. Значит КАА1 и А1ОР подобные с коэффициентом 1/3. Значит ОР=а/3, где а - длина ребра исходного тетраэдра. Уф. Осталось применить формулу объема правильного тетраэдра V=(a3)*√3/12. Собственно важно только что объем зависит лишь от куба длины ребра. V маленького равен тогда V большого поделить на три в кубе, то есть равен 40.5/27 = 1.5
Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.