Найдите стороны треугольника ABC, зная, что периметр данного треугольника, причём описанного вокруг окружности, равен 66 см. Точка соприкосновения круга к стороне АВ делит эту сторону в отношении 4: 3, считая от вершины А. Точка касания к стороне АС удаленная от вершины С на 5 см.
По условию BD=3x, DC=2x, AF=3y, FC=4y.
Возьмем на отрезке FC точку E так, чтобы DE║ BF. По теореме о пропорциональных отрезках, примененной к углу BCA и параллельным прямым BF и DE, FE:EC=BD:DC=3:2. То есть если отрезок FC разделить на 5 равных отрезков, три из них покроют отрезок FE, остальные два - EC. Поэтому EF=(3/5)FC=(3/5)4y=12y/5. По теореме о пропорциональных отрезках, примененной к углу DAC и параллельным прямым PF и DE, AP:PD=AF:FE=(3y)/(12y/5)=5/4.
Ладно, уговорили, сделаем задачу и первым Кто не знает теорему Менелая, разобравшись в решении, поймет суть этой теоремы (а можно залезть в интернет и найти точную формулировку; можно и умную книжку поискать на своей книжной полке). Применим теорему Менелая к треугольнику ADC и прямой BF:
(AP/PD)·(DB/BC)·(CF/FA)=1⇒AP/PD=(BC/DB)·(FA/CF)=(5/3)·(3/4)=5/4
ответ: 5/4
Подробнее - на -