В треугольнике ABC внешние углы при вершинах A и B равны. Докажите , что 2AC больше AB. Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны. Следовательно, углы А и В равны и треугольник АВС равнобедренный с основанием АВ. Одно из основных свойств треугольника гласит : Любая сторона треугольника меньше суммы двух других сторон и больше их разности. Так как АС=ВС, 2 АС=АС+ВС. АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол. Следовательно, 2 АС больше АВ, что и требовалось доказать
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.
Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны.
Следовательно, углы А и В равны и треугольник АВС равнобедренный с основанием АВ.
Одно из основных свойств треугольника гласит :
Любая сторона треугольника меньше суммы двух других сторон и больше их разности.
Так как АС=ВС, 2 АС=АС+ВС.
АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол.
Следовательно, 2 АС больше АВ, что и требовалось доказать