1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
m = 1/2 * √(2*72+2*100-52) = 1/2 * √292 = √73 см
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.