В прямоугольном параллелепипеде противоположные грани параллельны, равны и являются прямоугольниками. Таким образом, у него три пары равных граней.
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом. 3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней. 42 : 7 = 6 (см) - высота параллелепипеда. В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора) Эта гипотенуза является диагональю основания. 6 * 5 = 30 (см^2) - площадь диагонального сечения. ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом.
3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней.
42 : 7 = 6 (см) - высота параллелепипеда.
В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора)
Эта гипотенуза является диагональю основания.
6 * 5 = 30 (см^2) - площадь диагонального сечения.
ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.
S = 1/2*√(A^2 + B^2 + C^2)
Здесь A, B, C - это матрицы
A = |y2-y1 z2-z1| = |-3+4 -1-0| = |1 -1| = 2
|y3-y1 z3-z1| |-2+4 0-0| |2 0|
B = |z2-z1 x2-x1| = |-1-0 4+2| = |-1 6| = -5
|z3-z1 x3-x1| | 0-0 3+2| |0 5|
C = |x2-x1 y2-y1| = |4+2 -3+4| = |6 1| = 12 - 5 = 7
|x3-x1 y3-y1| |3+2 -2+4| |5 2|
S = 1/2*√(2^2 + (-5)^2 + 7^2) = 1/2*√(4 + 25 + 49) = 1/2*√(78)
С объемом проще
|4+2 -3+4 -1-0| |6 1 -1|
V = 1/6*|3+2 -2+4 0-0| = 1/6*|5 2 0| = 1/6*(60+0-15+8-0-25) = 1/6*28 = 14/3
|2+2 -1+4 5-0| |4 3 5|