Попробуй решить по похожей, просто щаменя цифры 3 и 12 на 8 и 18, и все получится. Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
1. 66°
2. 2
3. 4,5
Объяснение:
1. Сумма углов треугольника равна 180°.
ΔКМС: ∠МКС = 180° - (∠КМС + ∠КСМ) = 180° - (88° + 26°) = 180° - 114° = 66°
∠ВАС = ∠МКС = 66° как соответственные при пересечении параллельных прямых АВ и КМ секущей АС.
2. Противолежащие стороны параллелограмма равны.
ВС = AD = 7
ВК = ВС - КС = 7 - 5 = 2
∠ВАК = ∠DAK так как АК биссектриса угла А,
∠DAK = ∠ВКА как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АК, следовательно
∠ВАК = ∠ВКА, тогда ΔВАК равнобедренный,
АВ = ВК = 2
CD = AB = 2
3. Площадь треугольника АВС можно найти как половину произведения стороны треугольника на проведенную к ней высоту:
S = 1/2 · AC · BH = 1/2 · BC · AK
AC · BH = BC · AK
AK = AC · BH / BC = 6 · 3 / 4 = 18/4 = 4,5