А) Точки A(4;2;-1), С(-4;2;1), D(7;-3;4) - вершины параллелограмма ABCD. Найдите координаты четвертой вершины параллелограмма.
б) Доказать, четырехугольник ABCD - прямоугольник, если А(-1;5;-4) B(3;2;4) C(6;-2;1) D(2;1;-7)
в) Доказать, четырехугольник ABCD - равнобедренная трапеция, если А(6;-4;2) B(1;-1;4) C(-1;4;1) D(2;6;-4)
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2
Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10