7. Центр окружности находится на гипотенузе прямоугольного треугольника ABC. Окружность касается катета AC в точке E, а катета BC— в точке F. Докажите, что радиус окружности является средним геометрическим отрезков AE и BF.
Найдите площадь треугольника EKT , где T и K—точки пересечения окружности с гипотенузой, если АЕ=4, BF=12.
0,5
Объяснение:
1-й
Площадь треугольника равна половине произведения основания на высоту.
В прямоугольном треугольнике основанием и высотой являются его катеты.
В приведённом примере оба катета равны 1, т.к. все 3 вершины треугольника совпадают с вершинами квадрата, а стороны квадрата равны.
Находим площадь треугольника:
(1 * 1) : 2 = 1 : 2 = 0,5.
2-й
Диагональ квадрата делит его на 2 равных треугольника. Поэтому, если площадь квадрата равна 1, то площадь треугольника, образованного сторонами и диагональю квадрата, равна 1 : 2 = 0,5
ответ: 0,5.
ПРИМЕЧАНИЕ.
В задании не сказано, но на рисунке отмечена диагональ квадрата как х.
Согласно теореме Пифагора,
х = √ (1² + 1²) = √2.
Зная стороны треугольника (1 и √2), площадь треугольника можно рассчитать третьим площадь треугольника равна половине произведения сторон на синус угла между ними.
Угол между стороной и гипотенузой равен 45°, т.к. диагональ квадрата является биссектрисой угла, а угол - прямой, равен 90°.
sin 45° = √2/2.
Отсюда площадь треугольника равна:
(1 * √2 * √2/2) : 2 = (1 * 2/2) : 2 = 0,5
Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.