Биссектрисы смежных углов перпендикулярны. [Сумма смежных углов равна 180°; угол между биссектрисами смежных углов равен полусумме смежных углов, т.е. 90°.] ∠A1AO=∠A1BO=90°
Диагонали ромба пересекаются под прямым углом. ∠AOB=90°
Если у четырехугольника три угла прямые, то он является прямоугольником. [Сумма углов четырехугольника равна 360°; 360°-90°·3=90°; четырехугольник, у которого противоположные углы равны, является параллелограммом; параллелограмм, у которого (хотя бы) один угол прямой, является прямоугольником.] ∠AA1B=90°
Объяснение:
1) CO=OD
AO=OB
угол СОА= углу DOB(как вертикальные), значит треугольники равны по 2-м сторонам и углу между ними.
2) угол 1=углу2
угол РОQ=углу MON(как вертикальные)
МО=ОQ, значит треугольник равны по стороне и 2-м прилежащим углам
3) угол 1=углу2
Угол 3=углу4
АС-общая, значит треугольники равны по стороне и 2-м прилежащим углам.
4) угол1=углу2
МК=АВ
АК-общая, значит треугольники равны по 2-м сторонам и углу между ними
5) АВ=ВС
АМ=МС
МВ-общая, значит треугольники равны по 3-м сторонам.
6) АВ=DC
AD=BC
BD- общая, значит треугольники равны по 3-м сторонам.
[Сумма смежных углов равна 180°; угол между биссектрисами смежных углов равен полусумме смежных углов, т.е. 90°.]
∠A1AO=∠A1BO=90°
Диагонали ромба пересекаются под прямым углом.
∠AOB=90°
Если у четырехугольника три угла прямые, то он является прямоугольником.
[Сумма углов четырехугольника равна 360°; 360°-90°·3=90°; четырехугольник, у которого противоположные углы равны, является параллелограммом; параллелограмм, у которого (хотя бы) один угол прямой, является прямоугольником.]
∠AA1B=90°
Аналогично другие углы четырехугольника, образованного пересечением биссектрис смежных углов ромба, прямые.