5.29. в равнобедренном треугольнике основание и высота равны 4 м. данная точка находится на расстоянии в 6 м от плоскости треугольника и на равном расстоянии от его вершин. найдите это расстояние.5.33. из точки к плоскости проведены две наклонные. найдите длину наклонных, если: 1) одна из них на 26 см больше другой; 2) наклонные относятся к 1: 2, а проекии наклонных равны 1 см и 7 см.нужно ! заранее!
в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "
ΔД = С-В = (-1+1=0; 3+1=4; 1-1=0) = (0; 4; 0).
Д = А + ΔД = (3+0=3; -1+4=3; 1+0=1) = (3; 3;1).
ΔД1 = С1-С = (-1+1=0; 3-3=0; 5-1=4) =(0; 0; 4).
Д1 = Д + Д1 = (3+0=3; 3+0=3; 1+4=5) = (3; 3; 5).
В1 = В + ΔД1 = (-1+0=-1; -1+0=-1; 1+4=50 = (-1; -1; 5).
А1 = А + ΔД1 = (3+0=3; -1+0=-1; 1+4=5) = (3; -1; 5).
б) Вершины А1(3: -1; 5) и С(-1; 3; 1).
Вектор А1С = (-1-3=-4; 3+1=4; 1-5=-4) = (-4; 4;-4) - это и есть разложение по координатным векторам вектора А1С.